Prediksi Penyakit Jantung Menggunakan Attribute Weighting k-Nearest Neighbor
نویسندگان
چکیده
Penyakit kardiovaskular atau lebih dikenal dengan penyakit jantung menjadi salah satu penyebab kematian tertinggi di Indonesia dan tingkat global. Selain pola hidup sehat untuk mencegah tersebut, deteksi dini terhadap resiko dapat dilakukan data mining machine learning satunya k-NN. k-NN adalah metode paling sederhana kuat dalam konsistensi hasil klasifikasi, akan tetapi memiliki kekurangan yaitu memberikan bobot yang sama kepada semua atribut. Penelitian ini mengusulkan pembobotan pada atribut mengatasi kelemahan tersebut. Prediksi digunakan menggambarkan kinerja usulan. Pada penelitian menggunakan dataset Heart Disease, sebuah publik dari University of California Irvine. Dengan nilai k 3, 5, 7, 9 diperoleh rata-rata usulan sebesar 79,87% baik dibandingkan Chi-Square 79,08% klasik 65,89%. menyimpulkan bahwa berhasil k-NN, jadi cocok prediksi jantung.
منابع مشابه
Class Dependent Feature Weighting and K-Nearest Neighbor Classification
Feature weighting in supervised learning concerns the development of methods for quantifying the capability of features to discriminate instances from different classes. A popular method for this task, called RELIEF, generates a feature weight vector from a given training set, one weight for each feature. This is achieved by maximizing in a greedy way the sample margin defined on the nearest ne...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملTarget Neighbor Consistent Feature Weighting for Nearest Neighbor Classification
We consider feature selection and weighting for nearest neighbor classifiers. Atechnical challenge in this scenario is how to cope with discrete update of nearestneighbors when the feature space metric is changed during the learning process.This issue, called the target neighbor change, was not properly addressed in theexisting feature weighting and metric learning literature. I...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملUnsupervised K-Nearest Neighbor Regression
In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Incomtech
سال: 2023
ISSN: ['2085-4811', '2579-6089']
DOI: https://doi.org/10.22441/incomtech.v13i2.17883